Astrophysics > Solar and Stellar Astrophysics
[Submitted on 28 Nov 2024]
Title:CME propagation in the dynamically coupled space weather tool: COCONUT + EUHFORIA
View PDFAbstract:This paper aims to present the time-dependent coupling between the coronal model COolfluid COroNal UnsTructured (COCONUT) and the heliospheric forecasting tool EUHFORIA.
We perform six COCONUT simulations where a flux rope is implemented at the solar surface using either the Titov-Démoulin CME model or the Regularized Biot-Savart Laws (RBSL) CME model. At regular intervals, the magnetic field, velocity, temperature, and density of the 2D surface $R_{b}=21.5~\;R_{\odot}$ are saved in boundary files. This series of coupling files is read in a modified version of EUHFORIA to update progressively its inner boundary. After presenting the early stage of the propagation in COCONUT, we examine how the disturbance of the solar corona created by the propagation of flux ropes is transmitted into EUHFORIA. In particular, we consider the thermodynamic and magnetic profiles at L1 and compare them with those obtained at the interface between the two models.
We demonstrate that the properties of the heliospheric solar wind in EUHFORIA are consistent with those in COCONUT, acting as a direct extension of the coronal domain. Moreover, the disturbances initially created from the propagation of flux ropes in COCONUT continue evolving from the corona in the heliosphere to Earth with a smooth transition at the interface between the two simulations. Looking at the profile of magnetic field components at Earth and different distances from the Sun, we also find that the transient magnetic structures have a self-similar expansion in COCONUT and EUHFORIA. However, the amplitude of the profiles depends on the flux rope model used and its properties, thus emphasizing the important role of the initial properties in solar source regions for accurately predicting the impact of CMEs.
Current browse context:
astro-ph.SR
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.