Computer Science > Sound
[Submitted on 25 Nov 2024]
Title:A Cross-Corpus Speech Emotion Recognition Method Based on Supervised Contrastive Learning
View PDFAbstract:Research on Speech Emotion Recognition (SER) often faces challenges such as the lack of large-scale public datasets and limited generalization capability when dealing with data from different distributions. To solve this problem, this paper proposes a cross-corpus speech emotion recognition method based on supervised contrast learning. The method employs a two-stage fine-tuning process: first, the self-supervised speech representation model is fine-tuned using supervised contrastive learning on multiple speech emotion datasets; then, the classifier is fine-tuned on the target dataset. The experimental results show that the WavLM-based model achieved unweighted accuracy (UA) of 77.41% on the IEMOCAP dataset and 96.49% on the CASIA dataset, outperforming the state-of-the-art results on the two datasets.
Current browse context:
cs.SD
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.