Electrical Engineering and Systems Science > Audio and Speech Processing
[Submitted on 24 Nov 2024]
Title:High-precision medical speech recognition through synthetic data and semantic correction: UNITED-MEDASR
View PDF HTML (experimental)Abstract:Automatic Speech Recognition (ASR) systems in the clinical domain face significant challenges, notably the need to recognise specialised medical vocabulary accurately and meet stringent precision requirements. We introduce United-MedASR, a novel architecture that addresses these challenges by integrating synthetic data generation, precision ASR fine-tuning, and advanced semantic enhancement techniques. United-MedASR constructs a specialised medical vocabulary by synthesising data from authoritative sources such as ICD-10 (International Classification of Diseases, 10th Revision), MIMS (Monthly Index of Medical Specialties), and FDA databases. This enriched vocabulary helps finetune the Whisper ASR model to better cater to clinical needs. To enhance processing speed, we incorporate Faster Whisper, ensuring streamlined and high-speed ASR performance. Additionally, we employ a customised BART-based semantic enhancer to handle intricate medical terminology, thereby increasing accuracy efficiently. Our layered approach establishes new benchmarks in ASR performance, achieving a Word Error Rate (WER) of 0.985% on LibriSpeech test-clean, 0.26% on Europarl-ASR EN Guest-test, and demonstrating robust performance on Tedlium (0.29% WER) and FLEURS (0.336% WER). Furthermore, we present an adaptable architecture that can be replicated across different domains, making it a versatile solution for domain-specific ASR systems.
Current browse context:
eess.AS
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.