Electrical Engineering and Systems Science > Audio and Speech Processing
[Submitted on 25 Nov 2024]
Title:Feasibility of Mental Health Triage Call Priority Prediction Using Machine Learning
View PDF HTML (experimental)Abstract:Ensuring accurate call prioritisation is essential for optimising the efficiency and responsiveness of mental health helplines. Currently, call operators rely entirely on the caller's statements to determine the priority of the calls. It has been shown that entirely subjective assessment can lead to errors. Furthermore, it is a missed opportunity not to utilise the voice properties readily available during the call to aid in the evaluation. Incorrect prioritisation can result in delayed assistance for high-risk individuals, resource misallocation, increased mental health deterioration, loss of trust, and potential legal consequences. It is vital to address these risks to guarantee the reliability and effectiveness of mental health services. This study delves into the potential of using machine learning, a branch of Artificial Intelligence, to estimate call priority from the callers' voices for users of mental health phone helplines. After analysing 459 call records from a mental health helpline, we achieved a balanced accuracy of 92\%, showing promise in aiding the call operators' efficiency in call handling processes and improving customer satisfaction.
Current browse context:
eess.AS
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.