Physics > Chemical Physics
[Submitted on 30 Nov 2024]
Title:Basis set incompleteness errors in fixed-node diffusion Monte Carlo calculations on non-covalent interactions
View PDF HTML (experimental)Abstract:Basis set incompleteness error (BSIE) is a common source of error in quantum chemistry (QC) calculations, but it has not been comprehensively studied in fixed-node Diffusion Monte Carlo (FN-DMC) calculations. FN-DMC, being a projection method, is often considered minimally affected by basis set biases. Here, we show that this assumption is not always valid. While the relative error introduced by a small basis set in the total FN-DMC energy is minor, it can become significant in binding energy ($E_{\rm b}$) evaluations of weakly interacting systems. We systematically investigated BSIEs in FN-DMC-based binding energy ($E_{\rm b}$) evaluations using the A24 dataset, a well-known benchmark set of 24 non-covalently bound dimers. Contrary to common expectations, we found that BSIEs in FN-DMC evaluations of $E_{\rm b}$ are indeed significant when small localized basis sets, such as cc-pVDZ, are employed. We observed that BSIEs are larger in dimers with hydrogen-bonding interactions and smaller in dispersion-dominated interactions. We also found that augmenting the basis sets with diffuse orbitals, using counterpoise (CP) correction, or both, effectively mitigates BSIEs.
Current browse context:
physics.chem-ph
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.