Physics > Computational Physics
[Submitted on 1 Dec 2024]
Title:FeynKrack: A continuum model for quasi-brittle damage through Feynman-Kac killed diffusion
View PDF HTML (experimental)Abstract:Continuum damage mechanics (CDM) is a popular framework for modelling crack propagation in solids. The CDM uses a damage parameter to quantitatively assess what one loosely calls `material degradation'. While this parameter is sometimes given a physical meaning, the mathematical equations for its evolution are generally not consistent with such physical interpretations. Curiously, degradation in the CDM may be viewed as a change of measures, wherein the damage variable appears as the Radon-Nikodym derivative. We adopt this point of view and use a probabilistic measure-valued description for the random microcracks underlying quasi-brittle damage. We show that the evolution of the underlying density may be described via killed diffusion as in the Feynman-Kac theory. Damage growth is then interpreted as the reduction in this measure over a region, which in turn quantifies the disruption of bonds through a loss of force-transmitting mechanisms between nearby material points. Remarkably, the evolution of damage admits an approximate closed-form solution. This brings forth substantive computational ease, facilitating fast yet accurate simulations of large dimensional problems. By selecting an appropriate killing rate, one accounts for the irreversibility of damage and thus eliminates the need for ad-hoc history-dependent routes typically employed, say, in phase field modelling of damage. Our proposal FeynKrack (a short form for Feynman-Kac crack propagator) is validated and demonstrated for its efficacy through several simulations on quasi-brittle damage. It also offers a promising stochastic route for future explorations of non-equilibrium thermodynamic aspects of damage.
Current browse context:
physics.comp-ph
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.