Condensed Matter > Mesoscale and Nanoscale Physics
[Submitted on 2 Dec 2024]
Title:Transistors based on Novel 2-D Monolayer Semiconductors Bi2O2Se, InSe, and MoSi2N4 for Enhanced Logic Density Scaling
View PDF HTML (experimental)Abstract:Making ultra-short gate-length transistors significantly contributes to scaling the contacted gate pitch. This, in turn, plays a vital role in achieving smaller standard logic cells for enhanced logic density scaling. As we push the boundaries of miniaturization, it is intriguing to consider that the ultimate limit of contacted gate pitch could be reached with remarkable 1 nm gate-length transistors. Here, we identify InSe, Bi2O2Se, and MoSi2N4 as potential two-dimensional semiconductors for 1 nm transistors with low contact resistance and outstanding interface properties. We employ a fully self-consistent ballistic quantum transport model starting from first-principle calculations. Our simulations show that the interplay between electrostatics and quantum tunneling influences the performance of these devices over the device design space. MoSi2N4 channels have the best immunity to quantum tunneling, and Bi2O2Se channel devices have the best electrostatics. We show that for a channel length of 12 nm, all the devices can deliver I_$ON$/I_$OFF$ > 10^3 , suitable for electronic applications, and Bi2O2Se is the best-performing channel material.
Current browse context:
cond-mat.mes-hall
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.