Physics > Computational Physics
[Submitted on 2 Dec 2024]
Title:Efficiency of parallel computations of gravitational forces by TreeCode method in N-body models
View PDFAbstract:Modeling of collisionless galactic systems is based on the N-body model, which requires large computational resources due to the long-range nature of gravitational forces. The most common method for calculating gravity is the TreeCode algorithm, which provides a faster calculation of the force compared to the direct summation of contributions from all particles for N-body simulation. An analysis of the computational efficiency is performed for models with the number of particles up to $10^{8}$. We considered several processors with different architectures in order to determine the performance of parallel simulations based on the OpenMP standard. An analysis of the use of extra threads in addition to physical cores shows an increase in simulation performance only when all logical threads are loaded, which doubles the total number of threads. This gives an increase in the efficiency of parallel computing by 20 percent on average.
Submission history
From: Alexander Khoperskov V. [view email][v1] Mon, 2 Dec 2024 17:27:50 UTC (1,172 KB)
Current browse context:
physics.comp-ph
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.