Mathematics > Differential Geometry
[Submitted on 3 Dec 2024]
Title:On the existence of a balanced vertex in geodesic nets with three boundary vertices
View PDF HTML (experimental)Abstract:Geodesic nets are types of graphs in Riemannian manifolds where each edge is a geodesic segment. One important object used in the construction of geodesic nets is a balanced vertex, where the sum of unit tangent vectors along adjacent edges is zero. In 2021, Parsch proved the upper bound for the number of balanced vertices of a geodesic net with three unbalanced vertices on surfaces with non-positive curvature. We extend his result by proving the existence of a balanced vertex of a triangle (with three unbalanced vertices) on any two-dimensional surface when all angles measure less than $2\pi/3$, if the length of the sides of the triangle are not too large. This property is also a generalization for the existence of the Fermat point of a planar triangle.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.