Physics > Computational Physics
[Submitted on 6 Dec 2024]
Title:Self-Organizing Complex Networks with AI-Driven Adaptive Nodes for Optimized Connectivity and Energy Efficiency
View PDF HTML (experimental)Abstract:High connectivity and robustness are critical requirements in distributed networks, as they ensure resilience, efficient communication, and adaptability in dynamic environments. Additionally, optimizing energy consumption is also paramount for ensuring sustainability of networks composed of energy-constrained devices and prolonging their operational lifespan. In this study, we introduce an Artificial Intelligence (AI)-enhanced self-organizing network model, where each adaptive node autonomously adjusts its transmission power to optimize network connectivity and redundancy while lowering energy consumption. Building on our previous Hamiltonian-based methodology, which is designed to lead networks toward globally optimized states of complete connectivity and minimal energy usage, this research integrates a Multi-Layer Perceptron (MLP)-based decision-making model at each node. By leveraging a dataset from the Hamiltonian approach, each node independently learns and adapts its transmission power in response to local conditions, resulting in emergent global behaviors marked by high connectivity and resilience against structural disruptions. This distributed, MLP-driven adaptability allows nodes to make context-aware power adjustments autonomously, enabling the network to maintain its optimized state over time. Simulation results show that the proposed AI-driven adaptive nodes collectively achieve stable complete connectivity, significant robustness, and optimized energy usage under various conditions, including static and mobile network scenarios. This work contributes to the growing field of self-organizing networks by illustrating the potential of AI to enhance complex network design, supporting the development of scalable, resilient, and energy-efficient distributed systems across diverse applications.
Current browse context:
physics.comp-ph
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.