Physics > Fluid Dynamics
[Submitted on 7 Dec 2024]
Title:Hydrodynamic density-functional theory for the moving contact-line problem reveals fluid structure and emergence of a spatially distinct pattern
View PDF HTML (experimental)Abstract:Understanding the nanoscale effects controlling the dynamics of a contact line -- defined as the line formed at the junction of two fluid phases and a solid -- has been a longstanding problem in fluid mechanics pushing experimental and numerical methods to their limits. A major challenge is the multiscale nature of the problem, whereby nanoscale phenomena manifest themselves at the macroscale. To probe the nanoscale, not easily accessible to other methods, we propose a reductionist model that employs elements from statistical mechanics, namely dynamic-density-functional theory (DDFT), in a Navier-Stokes-like equation -- an approach we name hydrodynamic DDFT. The model is applied to an isothermal Lennard-Jones-fluid with no slip on a flat solid substrate. Our computations reveal fluid stratification with an oscillatory density structure close to the wall and the emergence of two distinct regions as the temperature increases: a region of compression on the vapor side of the liquid-vapour interface and an effective slip region of large shear on the liquid side. The compressive region spreads along the fluid interface at a lengthscale that increases faster than the width of the fluid interface with temperature, while the width of the slip region is bound by the oscillatory fluid density structure and is constrained to a few particle diameters from the wall. Both compressive and shear effects may offset contact line friction, while compression in particular has a disproportionately high effect on the speed of advancing contact lines at low temperatures.
Submission history
From: Serafim Kalliadasis [view email][v1] Sat, 7 Dec 2024 13:12:40 UTC (4,256 KB)
Current browse context:
physics.flu-dyn
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.