Mathematics > Numerical Analysis
[Submitted on 8 Dec 2024]
Title:A review of low-rank methods for time-dependent kinetic simulations
View PDF HTML (experimental)Abstract:Time-dependent kinetic models are ubiquitous in computational science and engineering. The underlying integro-differential equations in these models are high-dimensional, comprised of a six--dimensional phase space, making simulations of such phenomena extremely expensive. In this article we demonstrate that in many situations, the solution to kinetics problems lives on a low dimensional manifold that can be described by a low-rank matrix or tensor approximation. We then review the recent development of so-called low-rank methods that evolve the solution on this manifold. The two classes of methods we review are the dynamical low-rank (DLR) method, which derives differential equations for the low-rank factors, and a Step-and-Truncate (SAT) approach, which projects the solution onto the low-rank representation after each time step. Thorough discussions of time integrators, tensor decompositions, and method properties such as structure preservation and computational efficiency are included. We further show examples of low-rank methods as applied to particle transport and plasma dynamics.
Current browse context:
math.NA
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.