Computer Science > Sound
[Submitted on 9 Dec 2024]
Title:Source Separation & Automatic Transcription for Music
View PDF HTML (experimental)Abstract:Source separation is the process of isolating individual sounds in an auditory mixture of multiple sounds [1], and has a variety of applications ranging from speech enhancement and lyric transcription [2] to digital audio production for music. Furthermore, Automatic Music Transcription (AMT) is the process of converting raw music audio into sheet music that musicians can read [3]. Historically, these tasks have faced challenges such as significant audio noise, long training times, and lack of free-use data due to copyright restrictions. However, recent developments in deep learning have brought new promising approaches to building low-distortion stems and generating sheet music from audio signals [4]. Using spectrogram masking, deep neural networks, and the MuseScore API, we attempt to create an end-to-end pipeline that allows for an initial music audio mixture (e.g...wav file) to be separated into instrument stems, converted into MIDI files, and transcribed into sheet music for each component instrument.
Current browse context:
cs.SD
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.