Nonlinear Sciences > Exactly Solvable and Integrable Systems
[Submitted on 8 Jan 2025 (v1), last revised 9 Jan 2025 (this version, v2)]
Title:Multidimensional integrable systems from contact geometry
View PDF HTML (experimental)Abstract:Upon having presented a bird's eye view of history of integrable systems, we give a brief review of certain earlier advances (arXiv:1401.2122 & arXiv:1812.02263) in the longstanding problem of search for partial differential systems in four independent variables, often referred to as (3+1)-dimensional or 4D systems, that are integrable in the sense of soliton theory. Namely, we review a recent construction for a large new class of (3+1)-dimensional integrable systems with Lax pairs involving contact vector fields. This class contains inter alia two infinite families of such systems, thus establishing that there is significantly more integrable (3+1)-dimensional systems than it was believed for a long time.
In fact, the construction under study yields (3+1)-dimensional integrable generalizations of many well-known dispersionless integrable (2+1)-dimensional systems like the dispersionless KP equation, as well as a first example of a (3+1)-dimensional integrable system with an algebraic, rather than rational, nonisospectral Lax pair.
To demonstrate the versatility of the construction in question, we employ it here to produce novel integrable (3+1)-dimensional generalizations for the following (2+1)-dimensional integrable systems: dispersionless BKP, dispersionless asymmetric Nizhnik--Veselov--Novikov, dispersionless Gardner, and dispersionless modified KP equations, and the generalized Benney system.
Submission history
From: Artur Sergyeyev [view email][v1] Wed, 8 Jan 2025 12:56:49 UTC (17 KB)
[v2] Thu, 9 Jan 2025 18:45:39 UTC (17 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.