Computer Science > Machine Learning
[Submitted on 9 Jan 2025]
Title:Emergent weight morphologies in deep neural networks
View PDF HTML (experimental)Abstract:Whether deep neural networks can exhibit emergent behaviour is not only relevant for understanding how deep learning works, it is also pivotal for estimating potential security risks of increasingly capable artificial intelligence systems. Here, we show that training deep neural networks gives rise to emergent weight morphologies independent of the training data. Specifically, in analogy to condensed matter physics, we derive a theory that predict that the homogeneous state of deep neural networks is unstable in a way that leads to the emergence of periodic channel structures. We verified these structures by performing numerical experiments on a variety of data sets. Our work demonstrates emergence in the training of deep neural networks, which impacts the achievable performance of deep neural networks.
Submission history
From: Steffen Rulands Prof. Dr. [view email][v1] Thu, 9 Jan 2025 19:48:51 UTC (1,509 KB)
Current browse context:
cs.LG
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.