Statistics > Methodology
[Submitted on 10 Jan 2025]
Title:Causal survival analysis, Estimation of the Average Treatment Effect (ATE): Practical Recommendations
View PDFAbstract:Causal survival analysis combines survival analysis and causal inference to evaluate the effect of a treatment or intervention on a time-to-event outcome, such as survival time. It offers an alternative to relying solely on Cox models for assessing these effects. In this paper, we present a comprehensive review of estimators for the average treatment effect measured with the restricted mean survival time, including regression-based methods, weighting approaches, and hybrid techniques. We investigate their theoretical properties and compare their performance through extensive numerical experiments. Our analysis focuses on the finite-sample behavior of these estimators, the influence of nuisance parameter selection, and their robustness and stability under model misspecification. By bridging theoretical insights with practical evaluation, we aim to equip practitioners with both state-of-the-art implementations of these methods and practical guidelines for selecting appropriate estimators for treatment effect estimation. Among the approaches considered, G-formula two-learners, AIPCW-AIPTW, Buckley-James estimators, and causal survival forests emerge as particularly promising.
Submission history
From: Charlotte Voinot [view email] [via CCSD proxy][v1] Fri, 10 Jan 2025 10:23:48 UTC (614 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.