Statistics > Applications
[Submitted on 10 Jan 2025]
Title:Forecasting Soccer Matches through Distributions
View PDF HTML (experimental)Abstract:Forecasting sporting events encapsulate a compelling intellectual endeavor, underscored by the substantial financial activity of an estimated $80 billion wagered in global sports betting during 2022, a trend that grows yearly. Motivated by the challenges set forth in the Springer Soccer Prediction Challenge, this study presents a method for forecasting soccer match outcomes by forecasting the shot quantity and quality distributions. The methodology integrates established ELO ratings with machine learning models. The empirical findings reveal that, despite the constraints of the challenge, this approach yields positive returns, taking advantage of the established market odds.
Submission history
From: Tiago Mendes-Neves [view email][v1] Fri, 10 Jan 2025 11:15:26 UTC (2,816 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.