Statistics > Methodology
[Submitted on 10 Jan 2025]
Title:Identification and Scaling of Latent Variables in Ordinal Factor Analysis
View PDF HTML (experimental)Abstract:Social science researchers are generally accustomed to treating ordinal variables as though they are continuous. In this paper, we consider how identification constraints in ordinal factor analysis can mimic the treatment of ordinal variables as continuous. We describe model constraints that lead to latent variable predictions equaling the average of ordinal variables. This result leads us to propose minimal identification constraints, which we call "integer constraints," that center the latent variables around the scale of the observed, integer-coded ordinal variables. The integer constraints lead to intuitive model parameterizations because researchers are already accustomed to thinking about ordinal variables as though they are continuous. We provide a proof that our proposed integer constraints are indeed minimal identification constraints, as well as an illustration of how integer constraints work with real data. We also provide simulation results indicating that integer constraints are similar to other identification constraints in terms of estimation convergence and admissibility.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.