Economics > Econometrics
[Submitted on 11 Jan 2025]
Title:A Hybrid Framework for Reinsurance Optimization: Integrating Generative Models and Reinforcement Learning
View PDF HTML (experimental)Abstract:Reinsurance optimization is critical for insurers to manage risk exposure, ensure financial stability, and maintain solvency. Traditional approaches often struggle with dynamic claim distributions, high-dimensional constraints, and evolving market conditions. This paper introduces a novel hybrid framework that integrates {Generative Models}, specifically Variational Autoencoders (VAEs), with {Reinforcement Learning (RL)} using Proximal Policy Optimization (PPO). The framework enables dynamic and scalable optimization of reinsurance strategies by combining the generative modeling of complex claim distributions with the adaptive decision-making capabilities of reinforcement learning.
The VAE component generates synthetic claims, including rare and catastrophic events, addressing data scarcity and variability, while the PPO algorithm dynamically adjusts reinsurance parameters to maximize surplus and minimize ruin probability. The framework's performance is validated through extensive experiments, including out-of-sample testing, stress-testing scenarios (e.g., pandemic impacts, catastrophic events), and scalability analysis across portfolio sizes. Results demonstrate its superior adaptability, scalability, and robustness compared to traditional optimization techniques, achieving higher final surpluses and computational efficiency.
Key contributions include the development of a hybrid approach for high-dimensional optimization, dynamic reinsurance parameterization, and validation against stochastic claim distributions. The proposed framework offers a transformative solution for modern reinsurance challenges, with potential applications in multi-line insurance operations, catastrophe modeling, and risk-sharing strategy design.
Current browse context:
econ.EM
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.