Mathematics > Commutative Algebra
[Submitted on 13 Jan 2025]
Title:Asymptotic regularity of graded family of ideals
View PDFAbstract:We show that the asymptotic regularity of a graded family $(I_n)_{n \ge 0}$ of homogeneous ideals in a standard graded algebra, i.e., the limit $\lim\limits_{n \rightarrow \infty} \text{reg } I_n/n$, exists in several cases; for example, when the family $(I_n)_{n \ge 0}$ consists of artinian ideals, or Cohen-Macaulay ideals of the same codimension, or when its Rees algebra is Noetherian. Many applications, including simplifications and generalizations of previously known results on symbolic powers and integral closures of powers of homogeneous ideals, are discussed. We provide a combinatorial interpretation of the asymptotic regularity in terms of the associated Newton--Okounkov body in various situations. We give a negative answer to the question of whether the limits $\lim\limits_{n \rightarrow \infty} \text{reg } (I_1^n + \dots + I_p^n)/n$ and $\lim\limits_{n \rightarrow \infty} \text{reg } (I_1^n \cap \cdots \cap I_p^n)/n$ exist, for $p \ge 2$ and homogeneous ideals $I_1, \dots, I_p$. We also examine ample evidence supporting a negative answer to the question of whether the asymptotic regularity of the family of symbolic powers of a homogeneous ideal always exists. Our work presents explicit Gröbner basis construction for ideals of the type $Q^n + (f^k)$, where $Q$ is a monomial ideal, $f$ is a polynomial in the polynomial ring in 4 variables over a field of characteristic 2.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.