Astrophysics > Cosmology and Nongalactic Astrophysics
[Submitted on 14 Jan 2025]
Title:Euclid preparation LX. The use of HST images as input for weak-lensing image simulations
View PDFAbstract:Data from the Euclid space telescope will enable cosmic shear measurements with very small statistical errors, requiring corresponding systematic error control level. A common approach to correct for shear biases involves calibrating shape measurement methods using image simulations with known input shear. Given their high resolution, Hubble Space Telescope (HST) galaxies can, in principle, be utilised to emulate Euclid observations. In this work, we employ a GalSim-based testing environment to investigate whether uncertainties in the HST point spread function (PSF) model or in data processing techniques introduce significant biases in weak-lensing (WL) shear calibration. We used single Sérsic galaxy models to simulate both HST and Euclid observations. We then `Euclidised' our HST simulations and compared the results with the directly simulated Euclid-like images. For this comparison, we utilised a moment-based shape measurement algorithm and galaxy model fits. Through the Euclidisation procedure, we effectively reduced the residual multiplicative biases in shear measurements to sub-percent levels. This achievement was made possible by employing either the native pixel scales of the instruments, utilising the Lanczos15 interpolation kernel, correcting for noise correlations, and ensuring consistent galaxy signal-to-noise ratios between simulation branches. However, the Euclidisation procedure requires further analysis on the impact of the correlated noise, to estimate calibration bias. Additionally, we conducted an in-depth analysis of the accuracy of TinyTim HST PSF models using star fields observed in the F606W and F814W filters. We observe that F606W images exhibit a broader scatter in the recovered best-fit focus, compared to those in the F814W filter.
Submission history
From: Diana Scognamiglio [view email][v1] Tue, 14 Jan 2025 18:58:06 UTC (28,513 KB)
Current browse context:
astro-ph.CO
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.