Computer Science > Machine Learning
[Submitted on 16 Jan 2025]
Title:Multimodal Marvels of Deep Learning in Medical Diagnosis: A Comprehensive Review of COVID-19 Detection
View PDFAbstract:This study presents a comprehensive review of the potential of multimodal deep learning (DL) in medical diagnosis, using COVID-19 as a case example. Motivated by the success of artificial intelligence applications during the COVID-19 pandemic, this research aims to uncover the capabilities of DL in disease screening, prediction, and classification, and to derive insights that enhance the resilience, sustainability, and inclusiveness of science, technology, and innovation systems. Adopting a systematic approach, we investigate the fundamental methodologies, data sources, preprocessing steps, and challenges encountered in various studies and implementations. We explore the architecture of deep learning models, emphasising their data-specific structures and underlying algorithms. Subsequently, we compare different deep learning strategies utilised in COVID-19 analysis, evaluating them based on methodology, data, performance, and prerequisites for future research. By examining diverse data types and diagnostic modalities, this research contributes to scientific understanding and knowledge of the multimodal application of DL and its effectiveness in diagnosis. We have implemented and analysed 11 deep learning models using COVID-19 image, text, and speech (ie, cough) data. Our analysis revealed that the MobileNet model achieved the highest accuracy of 99.97% for COVID-19 image data and 93.73% for speech data (i.e., cough). However, the BiGRU model demonstrated superior performance in COVID-19 text classification with an accuracy of 99.89%. The broader implications of this research suggest potential benefits for other domains and disciplines that could leverage deep learning techniques for image, text, and speech analysis.
Submission history
From: Khondokar Fida Hasan [view email][v1] Thu, 16 Jan 2025 12:38:49 UTC (3,846 KB)
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.