Physics > Medical Physics
[Submitted on 10 Feb 2025]
Title:Reliability of characterising coronary artery flow with the flow-split outflow strategy: comparison against the multiscale approach
View PDFAbstract:In computational modelling of coronary haemodynamics, imposing patient-specific flow conditions is paramount, yet often impractical due to resource and time constraints, limiting the ability to perform a large number of simulations particularly for diseased cases. We aimed to compare coronary haemodynamics quantified using a simplified flow-split strategy with varying exponents against the clinically verified but computationally intensive multiscale simulations under both resting and hyperaemic conditions in arteries with varying degrees of stenosis.
Six patient-specific left coronary artery trees were segmented and reconstructed, including three with severe (>70%) and three with mild (<50%) focal stenoses. Simulations were performed for the entire coronary tree to account for the flow-limiting effects from epicardial artery stenoses. Both a 0D-3D coupled multiscale model and a flow-split approach with four different exponents (2.0, 2.27, 2.33, and 3.0) were used. The resulting prominent haemodynamic metrics were statistically compared between the two methods.
Flow-split and multiscale simulations did not significantly differ under resting conditions regardless of the stenosis severity. However, under hyperaemic conditions, the flow-split method significantly overestimated the time-averaged wall shear stress by up to 16.8 Pa (p=0.031) and underestimate the fractional flow reserve by 0.327 (p=0.043), with larger discrepancies observed in severe stenoses than in mild ones. Varying the exponent from 2.0 to 3.0 within the flow-split methods did not significantly affect the haemodynamic results (p>0.141).
Flow-split strategies with exponents between 2.0 and 3.0 are appropriate for modelling stenosed coronaries under resting conditions. Multiscale simulations are recommended for accurate modelling of hyperaemic conditions, especially in severely stenosed arteries.
Current browse context:
physics.med-ph
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.