Computer Science > Machine Learning
[Submitted on 27 Feb 2025]
Title:Training Large Neural Networks With Low-Dimensional Error Feedback
View PDF HTML (experimental)Abstract:Training deep neural networks typically relies on backpropagating high dimensional error signals a computationally intensive process with little evidence supporting its implementation in the brain. However, since most tasks involve low-dimensional outputs, we propose that low-dimensional error signals may suffice for effective learning. To test this hypothesis, we introduce a novel local learning rule based on Feedback Alignment that leverages indirect, low-dimensional error feedback to train large networks. Our method decouples the backward pass from the forward pass, enabling precise control over error signal dimensionality while maintaining high-dimensional representations. We begin with a detailed theoretical derivation for linear networks, which forms the foundation of our learning framework, and extend our approach to nonlinear, convolutional, and transformer architectures. Remarkably, we demonstrate that even minimal error dimensionality on the order of the task dimensionality can achieve performance matching that of traditional backpropagation. Furthermore, our rule enables efficient training of convolutional networks, which have previously been resistant to Feedback Alignment methods, with minimal error. This breakthrough not only paves the way toward more biologically accurate models of learning but also challenges the conventional reliance on high-dimensional gradient signals in neural network training. Our findings suggest that low-dimensional error signals can be as effective as high-dimensional ones, prompting a reevaluation of gradient-based learning in high-dimensional systems. Ultimately, our work offers a fresh perspective on neural network optimization and contributes to understanding learning mechanisms in both artificial and biological systems.
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.