Computer Science > Computation and Language
[Submitted on 28 Feb 2025]
Title:Triple Phase Transitions: Understanding the Learning Dynamics of Large Language Models from a Neuroscience Perspective
View PDF HTML (experimental)Abstract:Large language models (LLMs) often exhibit abrupt emergent behavior, whereby new abilities arise at certain points during their training. This phenomenon, commonly referred to as a ''phase transition'', remains poorly understood. In this study, we conduct an integrative analysis of such phase transitions by examining three interconnected perspectives: the similarity between LLMs and the human brain, the internal states of LLMs, and downstream task performance. We propose a novel interpretation for the learning dynamics of LLMs that vary in both training data and architecture, revealing that three phase transitions commonly emerge across these models during training: (1) alignment with the entire brain surges as LLMs begin adhering to task instructions Brain Alignment and Instruction Following, (2) unexpectedly, LLMs diverge from the brain during a period in which downstream task accuracy temporarily stagnates Brain Detachment and Stagnation, and (3) alignment with the brain reoccurs as LLMs become capable of solving the downstream tasks Brain Realignment and Consolidation. These findings illuminate the underlying mechanisms of phase transitions in LLMs, while opening new avenues for interdisciplinary research bridging AI and neuroscience.
Current browse context:
cs.CL
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.