Computer Science > Computer Vision and Pattern Recognition
[Submitted on 27 Feb 2025]
Title:Forecasting Whole-Brain Neuronal Activity from Volumetric Video
View PDF HTML (experimental)Abstract:Large-scale neuronal activity recordings with fluorescent calcium indicators are increasingly common, yielding high-resolution 2D or 3D videos. Traditional analysis pipelines reduce this data to 1D traces by segmenting regions of interest, leading to inevitable information loss. Inspired by the success of deep learning on minimally processed data in other domains, we investigate the potential of forecasting neuronal activity directly from volumetric videos. To capture long-range dependencies in high-resolution volumetric whole-brain recordings, we design a model with large receptive fields, which allow it to integrate information from distant regions within the brain. We explore the effects of pre-training and perform extensive model selection, analyzing spatio-temporal trade-offs for generating accurate forecasts. Our model outperforms trace-based forecasting approaches on ZAPBench, a recently proposed benchmark on whole-brain activity prediction in zebrafish, demonstrating the advantages of preserving the spatial structure of neuronal activity.
Submission history
From: Michal Januszewski [view email][v1] Thu, 27 Feb 2025 17:54:56 UTC (3,982 KB)
Current browse context:
cs.CV
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.