Electrical Engineering and Systems Science > Image and Video Processing
[Submitted on 1 Mar 2025]
Title:Cross-Attention Fusion of MRI and Jacobian Maps for Alzheimer's Disease Diagnosis
View PDF HTML (experimental)Abstract:Early diagnosis of Alzheimer's disease (AD) is critical for intervention before irreversible neurodegeneration occurs. Structural MRI (sMRI) is widely used for AD diagnosis, but conventional deep learning approaches primarily rely on intensity-based features, which require large datasets to capture subtle structural changes. Jacobian determinant maps (JSM) provide complementary information by encoding localized brain deformations, yet existing multimodal fusion strategies fail to fully integrate these features with sMRI. We propose a cross-attention fusion framework to model the intrinsic relationship between sMRI intensity and JSM-derived deformations for AD classification. Using the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset, we compare cross-attention, pairwise self-attention, and bottleneck attention with four pre-trained 3D image encoders. Cross-attention fusion achieves superior performance, with mean ROC-AUC scores of 0.903 (+/-0.033) for AD vs. cognitively normal (CN) and 0.692 (+/-0.061) for mild cognitive impairment (MCI) vs. CN. Despite its strong performance, our model remains highly efficient, with only 1.56 million parameters--over 40 times fewer than ResNet-34 (63M) and Swin UNETR (61.98M). These findings demonstrate the potential of cross-attention fusion for improving AD diagnosis while maintaining computational efficiency.
Current browse context:
eess.IV
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.