Physics > Biological Physics
[Submitted on 4 Mar 2025]
Title:Electron spin dynamics guide cell motility
View PDFAbstract:Diverse organisms exploit the geomagnetic field (GMF) for migration. Migrating birds employ an intrinsically quantum mechanical mechanism for detecting the geomagnetic field: absorption of a blue photon generates a radical pair whose two electrons precess at different rates in the magnetic field, thereby sensitizing cells to the direction of the GMF. In this work, using an in vitro injury model, we discovered a quantum-based mechanism of cellular migration. Specifically, we show that migrating cells detect the GMF via an optically activated, electron spin-based mechanism. Cell injury provokes acute emission of blue photons, and these photons sensitize muscle progenitor cells to the magnetic field. We show that the magnetosensitivity of muscle progenitor cells is (a) activated by blue light, but not by green or red light, and (b) disrupted by the application of an oscillatory field at the frequency corresponding to the energy of the electron-spin/magnetic field interaction. A comprehensive analysis of protein expression reveals that the ability of blue photons to promote cell motility is mediated by activation of calmodulin calcium sensors. Collectively, these data suggest that cells possess a light-dependent magnetic compass driven by electron spin dynamics.
Current browse context:
physics.bio-ph
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.