Astrophysics
[Submitted on 28 Jan 2000]
Title:Particle Acceleration at Ultra-Relativistic Shocks and the Spectra of Relativistic Fireballs
View PDFAbstract: We examine Fermi-type acceleration at relativistic shocks, and distinguish between the initial boost of the first shock crossing cycle, where the energy gain per particle can be very large, and the Fermi process proper with repeated shock crossings, in which the typical energy gain is of order unity. We calculate by means of numerical simulations the spectrum and angular distribution of particles accelerated by this Fermi process, in particular in the case where particle dynamics can be approximated as small-angle scattering. We show that synchrotron emission from electrons or positrons accelerated by this process can account remarkably well for the observed power-law spectra of GRB afterglows and Crab-like supernova remnants. In the context of a decelerating relativistic fireball, we calculate the maximum particle energy attainable by acceleration at the external blast wave, and discuss the minimum energy for this acceleration process and its consequences for the observed spectrum.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.