Astrophysics
[Submitted on 9 Mar 2000]
Title:Counts and Sizes of Galaxies in the Hubble Deep Field - South: Implications for the Next Generation Space Telescope
View PDFAbstract: Science objectives for the Next Generation Space Telescope (NGST) include a large component of galaxy surveys, both imaging and spectroscopy. The Hubble Deep Field datasets include the deepest observations ever made in the ultraviolet, optical and near infrared, reaching depths comparable to that expected for NGST spectroscopy. We present the source counts, galaxy sizes and isophotal filling factors of the HDF-South images. The observed integrated galaxy counts reach >500 galaxies per square arcminute at AB<30. We extend these counts to faint levels in the infrared using models. The trend previously seen that fainter galaxies are smaller, continues to AB=29 in the high resolution HDF-S STIS image, where galaxies have a typical half-light radius of 0.1 arcseconds. Extensive Monte Carlo simulations show that the small measured sizes are not due to selection effects until >29mag. Using the HDF-S NICMOS image, we show that galaxies are smaller in the near infrared than they are in the optical. We analyze the isophotal filling factor of the HDF-S STIS image, and show that this image is mostly empty sky even at the limits of galaxy detection, a conclusion we expect to hold true for NGST spectroscopy. At the surface brightness limits expected for NGST imaging, however, about a quarter of the sky is occupied by the outer isophotes of AB<30 galaxies. We discuss the implications of these data on several design concepts of the NGST near-infrared spectrograph. We compare the effects of resolution and the confusion limit of various designs, as well as the multiplexing advantages of either multi-object or full-field spectroscopy. We argue that the optimal choice for NGST spectroscopy of high redshift galaxies is a multi-object spectrograph (MOS) with target selection by a micro electro mechanical system (MEMS) device.
Submission history
From: Jonathan P. Gardner [view email][v1] Thu, 9 Mar 2000 17:15:14 UTC (454 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.