Astrophysics
[Submitted on 4 Apr 2000]
Title:On the Two-Phase Structure of Protogalactic Clouds
View PDFAbstract: Within protogalaxies, thermal instability leads to the formation of a population of cool fragments, confined by the pressure of residual hot gas. The hot gas remains in quasi-hydrostatic equilibrium, at approximately the virial temperature of the dark matter halo. It is heated by compression and shock dissipation and is cooled by bremsstrahlung emission and conductive losses into the cool clouds. The cool fragments are photoionized and heated by the extragalactic UV background and nearby massive stars. The smallest clouds are evaporated due to conductive heat transfer from the hot gas. All are subject to disruption due to hydrodynamic instabilities. They also gain mass due to collisions and mergers and condensation from the hot gas due to conduction. The size distribution of the fragments in turn determines the rate and efficiency of star formation during the early phase of galactic evolution. We have performed one-dimensional hydrodynamic simulations of the evolution of the hot and cool gas. The cool clouds are assumed to follow a power-law size distribution, and fall into the galactic potential, subject to drag from the hot gas. The relative amounts of the hot and cool gas is determined by the processes discussed above, and star formation occurs at a rate sufficient to maintain the cool clouds at 10$^4$ K. We present density distributions for the two phases and also for the stars for several cases, parametrized by the circular speeds of the potentials. Under some conditions, primarily low densities of the hot gas, conduction is more efficient than radiative processes at cooling the hot gas, limiting the x-ray radiation from the halo gas.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.