Astrophysics
[Submitted on 5 Apr 2000]
Title:Stochastic Coagulation and the Timescale for Runaway Growth
View PDFAbstract: We study the stochastic coagulation equation using simplified models and efficient Monte Carlo simulations. It is known that (i) runaway growth occurs if the two-body coalescence kernel rises faster than linearly in the mass of the heavier particle; and (ii) for such kernels, runaway is instantaneous in the limit that the number of particles tends to infinity at fixed collision time per particle. Superlinear kernels arise in astrophysical systems where gravitational focusing is important, such as the coalescence of planetesimals to form planets or of stars to form supermassive black holes. We find that the time required for runaway decreases as a power of the logarithm of the the initial number of particles. Astrophysical implications are briefly discussed.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.