Astrophysics
[Submitted on 26 May 2000 (v1), last revised 22 Nov 2000 (this version, v2)]
Title:Inflation with a Planck-scale frequency cutoff
View PDFAbstract: The implementation of a Planck-scale high frequency and short wavelength cutoff in quantum theories on expanding backgrounds may have potentially nontrivial implications, such as the breaking of local Lorentz invariance and the existence of a yet unknown mechanism for the creation of vacuum modes. In scenarios where inflation begins close to the cutoff scale, these effects could have observable consequences as trans-Planckian modes are redshifted to cosmological scales. In close analogy with similar studies of Hawking radiation, a simple theory of a minimally coupled scalar field in de Sitter space is studied, with a high frequency cutoff imposed by a nonlinear dispersion relation. Under certain conditions the model predicts deviations from the standard inflationary scenario. We also comment on the difficulties in generalizing fluid models of Hawking radiation to cosmological space-times.
Submission history
From: Jens C. Niemeyer [view email][v1] Fri, 26 May 2000 00:03:41 UTC (19 KB)
[v2] Wed, 22 Nov 2000 15:23:28 UTC (16 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.