Astrophysics
[Submitted on 17 Jun 2000 (v1), last revised 22 Aug 2001 (this version, v2)]
Title:Physical parameters and emission mechanism in Gamma-Ray Bursts
View PDFAbstract: Detailed information on the physical parameters in the sources of cosmological Gamma-Ray Bursts (GRBs) is obtained from few plausible assumptions consistent with observations. Model-independent requirements posed by these assumptions on the emission mechanism in GRBs are formulated. It is found that the observed radiation in sub-MeV energy range is generated by the synchrotron emission mechanism, though about ten per cent of the total GRB energy should be converted via the inverse Compton process into ultra-hard spectral domain (above 100 GeV). We estimate the magnetic field strength in the emitting region, the Lorentz factor of accelerated electrons, and the typical energy of IC photons.
We show that there is a "line-of-death" relation for GRBs and derive from this relation the lower limits on both GRB duration and GRB variability timescale. The upper limit on the Lorentz factor of GRB fireballs is also found. We demonstrate that steady-state electron distribution consistent with the Compton losses may produce different spectral indices, e.g., 3/4 as opposed to the figure 1/2 widely discussed in the literature. It is suggested that the changes in the decline rate observed in the lightcurves of several GRB afterglows may be due to the time evolution of spectral break, which appears in the synchrotron emission generated by steady-state self-consistent electron distribution.
Submission history
From: Evgeny Derishev [view email][v1] Sat, 17 Jun 2000 10:50:53 UTC (12 KB)
[v2] Wed, 22 Aug 2001 13:14:41 UTC (14 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.