Astrophysics
[Submitted on 6 Nov 2000]
Title:Structure of the Galactic Stellar Halo Prior to Disk Formation
View PDFAbstract: We develop a method for recovering the global density distribution of the ancient Galactic stellar halo prior to disk formation, based on the present orbits of metal-poor stars observed in the solar neighborhood. The method relies on the adiabatic invariance of the action integrals of motion for the halo population during the slow accumulation of a disk component, subsequent to earlier halo formation. The method is then applied to a sample of local stars with [Fe/H]<=-1.5, likely to be dominated by the halo component, taken from Beers et al.'s recently revised and supplemented catalog of metal-poor stars selected without kinematic bias. We find that even if the Galactic potential is made spherical by removing the disk component in an adiabatic manner, the halo density distribution in the inner halo region (R <= 15 kpc) remains moderately flattened, with axial ratio of about 0.8 for stars in the abundance range [Fe/H]<=-1.8 and about 0.7 for the more metal-rich interval -1.8<[Fe/H]<=-1.5. The outer halo remains spherical for both abundance intervals. We also find that this initial flattening of the inner halo is caused by the anisotropic velocity dispersions of the halo stars. These results suggest that the two-component nature of the present-day stellar halo, characterized by a highly flattened inner halo and nearly spherical outer halo, is a consequence of both an initially two-component density distribution of the halo (perhaps a signature of dissipative halo formation) and of the adiabatic flattening of the inner part by later disk formation. Further implications of our results for the formation of the Galaxy are also discussed, in particular in the context of the hierarchical clustering scenario of galaxy formation.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.