Astrophysics
[Submitted on 6 Nov 2000]
Title:The Turbulent Shock Origin of Proto--Stellar Cores
View PDFAbstract: The fragmentation of molecular clouds (MC) into protostellar cores is a central aspect of the process of star formation. Because of the turbulent nature of super-sonic motions in MCs, it has been suggested that dense structures such as filaments and clumps are formed by shocks in a turbulent flow. In this work we present strong evidence in favor of the turbulent origin of the fragmentation of MCs. The most generic result of turbulent fragmentation is that dense post shock gas traces a gas component with a smaller velocity dispersion than lower density gas, since shocks correspond to regions of converging flows, where the kinetic energy of the turbulent motion is dissipated. Using synthetic maps of spectra of molecular transitions, computed from the results of numerical simulations of super--sonic turbulence, we show that the dependence of velocity dispersion on gas density generates an observable relation between the rms velocity centroid and the integrated intensity (column density), Sigma(V_0)-I, which is indeed found in the observational data. The comparison between the theoretical model (maps of synthetic 13CO spectra), with 13CO maps from the Perseus, Rosette and Taurus MC complexes, shows excellent agreement in the Sigma(V_0)-I relation. The Sigma(V_0)-I relation of different observational maps with the same total rms velocity are remarkably similar, which is a strong indication of their origin from a very general property of the fluid equations, such as the turbulent fragmentation process.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.