Astrophysics
[Submitted on 21 Nov 2000 (v1), last revised 30 Jan 2001 (this version, v3)]
Title:On the APM power spectrum and the CMB anisotropy: Evidence for a phase transition during inflation?
View PDFAbstract: Adams et al. (1997b) have noted that according to our current understanding of the unification of fundamental interactions, there should have been phase transitions associated with spontaneous symmetry breaking {\em during} the inflationary era. This may have resulted in the breaking of scale-invariance of the primordial density perturbation for brief periods. A possible such feature was identified in the power spectrum of galaxy clustering in the APM survey at the scale $k \sim 0.1 h$ Mpc^{-1} and it was shown that the secondary acoustic peaks in the power spectrum of the CMB anisotropy should consequently be suppressed. We demonstrate that this prediction is confirmed by the recent Boomerang and Maxima observations, which favour a step-like spectral feature in the range $k \sim (0.06-0.6)h$ Mpc^{-1}, independently of the similar previous indication from the APM data. Such a spectral break enables an excellent fit to both APM and CMB data with a baryon density consistent with the BBN value. It also allows the possibility of a matter-dominated universe with zero cosmological constant, which we show can now account for even the evolution of the abundance of rich clusters.
Submission history
From: Subir Sarkar [view email][v1] Tue, 21 Nov 2000 22:03:03 UTC (80 KB)
[v2] Wed, 22 Nov 2000 01:36:56 UTC (80 KB)
[v3] Tue, 30 Jan 2001 18:06:41 UTC (81 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.