Astrophysics
[Submitted on 23 Nov 2000]
Title:Near-infrared line imaging of the starburst galaxies NGC 520, NGC 1614 and NGC 7714
View PDFAbstract: We present high spatial resolution (0.6 arcsec) near-infrared broad-band JHK images and Br_gamma 2.1661 micron and H_2 1-0 S(1) 2.122 micron emission line images of the nuclear regions in the interacting starburst galaxies NGC 520, NGC 1614 and NGC 7714. The near-infrared emission line and radio morphologies are in general agreement, although there are differences in details. In NGC 1614, we detect a nuclear double structure in Br_gamma, in agreement with the radio double structure. We derive average extinctions of A(K) = 0.41 and A(K) = 0.18 toward the nuclear regions of NGC 1614 and NGC 7714, respectively. For NGC 520, the extinction is much higher, A(K) = 1.2 - 1.6. The observed H_2/Br_gamma ratios indicate that the main excitation mechanism of the molecular gas is fluorescence by intense UV radiation from clusters of hot young stars, while shock excitation can be ruled out.
The starburst regions in all galaxies exhibit small Br_gamma equivalent widths. Assuming a constant star formation model, even with a lowered upper mass cutoff of M_u = 30 M_o, results in rather old ages (10 - 40 Myr), in disagreement with the clumpy near-infrared morphologies. We prefer a model of an instantaneous burst of star formation with M_u = 100 M_o, occurring 6 - 7 Myr ago, in agreement with previous determinations and with the detection of W-R features in NGC 1614 and NGC 7714. Finally, we note a possible systematic difference in the amount of hot molecular gas between starburst and Seyfert galaxies.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.