Astrophysics
[Submitted on 26 Nov 2000]
Title:Probing Galaxy Formation with High Energy Gamma-Rays
View PDFAbstract: We discuss how measurements of the absorption of $\gamma$-rays from GeV to TeV energies via pair production on the extragalactic background light (EBL) can probe important issues in galaxy formation. We use semi-analytic models (SAMs) of galaxy formation, set within the hierarchical structure formation scenario, to obtain predictions of the EBL for 0.1-1000$\mu$m. SAMs incorporate simplified physical treatments of the key processes of galaxy formation --- including gravitational collapse and merging of dark matter halos, gas cooling and dissipation, star formation, supernova feedback and metal production --- and have been shown to reproduce key observations at low and high redshift. Here we also introduce improved modelling of the spectral energy distributions in the mid-to-far-IR arising from emission by dust grains. Assuming a flat \lcdm cosmology with $\Omega_m=0.3$ and Hubble parameter $h=0.65$, we investigate the consequences of variations in input assumptions such as the stellar initial mass function (IMF) and the efficiency of converting cold gas into stars. We conclude that observational studies of the absorption of $\gamma$-rays with energies from 10s of Gev to 10s of TeV will help to determine the EBL, and also help to explain its origin by constraining some of the most uncertain features of galaxy formation theory, including the IMF, the history of star formation, and the reprocessing of light by dust.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.