Astrophysics
[Submitted on 4 Feb 2004]
Title:Interferometric observations of the supergiant stars alpha Orionis and alpha Herculis with FLUOR at IOTA
View PDFAbstract: We report the observations in the K band of the red supergiant star alpha Orionis and of the bright giant star alpha Herculis with the FLUOR beamcombiner at the IOTA interferometer. The high quality of the data allows us to estimate limb-darkening and derive precise diameters in the K band which combined with bolometric fluxes yield effective temperatures. In the case of Betelgeuse, data collected at high spatial frequency although sparse are compatible with circular symmetry and there is no clear evidence for departure from circular symmetry. We have combined the K band data with interferometric measurements in the L band and at 11.15 micron. The full set of data can be explained if a 2055 K layer with optical depths $\tau_{K}=0.060\pm0.003$, $\tau_{L}=0.026\pm0.002$ and $\tau_{11.15\mu m}=2.33\pm0.23$ is added 0.33 $R_{\star}$ above the photosphere providing a first consistent view of the star in this range of wavelengths. This layer provides a consistent explanation for at least three otherwise puzzling observations: the wavelength variation of apparent diameter, the dramatic difference in limb darkening between the two supergiant stars, and the previously noted reduced effective temperature of supergiants with respect to giants of the same spectral type. Each of these may be simply understood as an artifact due to not accounting for the presence of the upper layer in the data analysis. This consistent picture can be considered strong support for the presence of a sphere of warm water vapor, proposed by Tsuji (2000) when interpreting the spectra of strong molecular lines.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.