Astrophysics
[Submitted on 10 Feb 2004 (v1), last revised 11 Feb 2004 (this version, v2)]
Title:Timing and spectral changes of the Be X-ray transient EXO 0531-6609.2 through high and low state
View PDFAbstract: We report on spectral and timing analysis of BeppoSAX data of the 13.6 s period transient X-ray pulsar EXO 0531-6609.2. Observations were carried out in March 1997 and October 1998, catching the source during a high and a low emission state, respectively. Correspondingly, the X-ray luminosity is found at a level of 4.2x10^37 erg/s and 1.5x10^36 erg/s in the two states. In the high state the X-ray emission in the energy range 1-100 keV is well fitted by an absorbed power-law with photon index Gamma ~1.7 plus a blackbody component with a characteristic temperature of ~3.5 keV. Moreover, we find an evidence of an iron emission at ~6.8 keV, typical feature in this class of sources but never revealed before in the EXO 0531-6609.2 spectrum. In the low state an absorbed power-law with Gamma ~0.4 is sufficient to fit the 1-10 keV data. During BeppoSAX observations EXO 0531-6609.2 display variations of the pulse profile with the X-ray flux: it showed single peaked and double peaked profiles in the low and high state, respectively. Based on these two observations we infer a spin-up period derivative of -(1.14+/-0.08)x10^-10 s/s. By comparing these with other period measurements reported in literature we find an alternating spin-up and spin-down behaviour that correlates well with the X-ray luminosity.
Submission history
From: Nanda Rea [view email][v1] Tue, 10 Feb 2004 10:14:00 UTC (40 KB)
[v2] Wed, 11 Feb 2004 11:00:06 UTC (40 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.