Astrophysics
[Submitted on 10 Feb 2004 (v1), last revised 3 Jan 2005 (this version, v2)]
Title:On the estimation of gravity-induced non-Gaussianities from weak lensing surveys
View PDFAbstract: We study various measures of weak lensing distortions in future surveys, taking into account the noise arising from the finite survey size and the intrinsic ellipticity of galaxies. We also consider a realistic redshift distribution of the sources, as expected for the SNAP mission. We focus on the low order moments and the full distribution function (pdf) of the aperture-mass $\Map$ and of the smoothed shear component $\gammais$. We also propose new unbiased estimators for low-order cumulants which have less scatter than the usual estimators of non-Gaussianity based on the moments themselves. Then, using an analytical model which has already been seen to provide a good description of weak gravitational lensing through comparison against numerical simulations, we study the statistical measures which can be extracted from future surveys like the SNAP experiment. We recover the fact that at small angular scales ($1'<\theta_s<10'$) the variance can be extracted with a few percent level accuracy. Non-Gaussianity can also be measured from the skewness of the aperture-mass (at a 10% level) while the shear kurtosis is more noisy and cannot be easily measured beyond 6'. On the other hand, we find that the pdf of the estimator associated with the aperture-mass can be distinguished both from the Gaussian and the Edgeworth expansion and could provide useful constraints, while this appears to be difficult to realize with the shear component. Finally, we investigate various survey strategies and the possibility to perform a redshift binning of the sample.
Submission history
From: Patrick Valageas [view email][v1] Tue, 10 Feb 2004 15:00:18 UTC (54 KB)
[v2] Mon, 3 Jan 2005 13:24:15 UTC (55 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.