Astrophysics
[Submitted on 1 Mar 2004]
Title:The 2dF QSO Redshift Survey - XII. The spectroscopic catalogue and luminosity function
View PDFAbstract: We present the final catalogue of the 2dF QSO Redshift Survey (2QZ), based on Anglo-Australian Telescope 2dF spectroscopic observations of 44576 colour-selected (u b_J r) objects with 18.25<b_J<20.85 selected from APM scans of UK Schmidt Telescope (UKST) photographic plates. The 2QZ comprises 23338 QSOs, 12292 galactic stars (including 2071 white dwarfs) and 4558 compact narrow-emission-line galaxies. We obtained a reliable spectroscopic identification for 86 per cent of objects observed with 2dF. We also report on the 6dF QSO Redshift Survey (6QZ), based on UKST 6dF observations of 1564 brighter 16<b_J<18.25 sources selected from the same photographic input catalogue. In total, we identified 322 QSOs spectroscopically in the 6QZ. The completed 2QZ is, by more than a factor 50, the largest homogeneous QSO catalogue ever constructed at these faint limits (b_J<20.85) and high QSO surface densities (35 QSOs deg^-2). As such it represents an important resource in the study of the Universe at moderate-to-high redshifts. As an example of the results possible with the 2QZ, we also present our most recent analysis of the optical QSO luminosity function and its cosmological evolution with redshift. For a flat, Omega_m=0.3 and Omega_lam=0.7, Universe, we find that a double power law with luminosity evolution that is exponential in look-back time, t, of the form L*(z) exp(6.15t), equivalent to an e-folding time of 2Gyr, provides an acceptable fit to the redshift dependence of the QSO luminosity function over the range 0.4 < z < 2.1 and M_bJ<-22.5. Evolution described by a quadratic in redshift is also an acceptable fit, with L*(z)~10^(1.39z-0.29z^2).
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.