Astrophysics
[Submitted on 3 Mar 2004 (v1), last revised 30 Aug 2004 (this version, v2)]
Title:XMM-Newton Observations of NGC 507: Super-solar Metal Abundances in the Hot ISM
View PDFAbstract: We present the results of the X-ray XMM-Newton observations of NGC 507, a dominant elliptical galaxy in a small group of galaxies, and report 'super-solar' metal abundances of both Fe and a-elements in the hot ISM of this galaxy. We find Z_Fe = 2-3 times solar inside the D25 ellipse of NGC 507. This is the highest Z_Fe reported so far for the hot halo of an elliptical galaxy; this high Iron abundance is fully consistent with the predictions of stellar evolution models, which include the yield of both type II and Ia supernovae. The spatially resolved, high quality XMM spectra provide enough statistics to formally require at least three emission components: two soft thermal components indicating a range of temperatures in the hot ISM, plus a harder component, consistent with the integrated output of low mass X-ray binaries (LMXBs). The abundance of a-elements (most accurately determined by Si) is also found to be super-solar. The a-elements to Fe abundance ratio is close to the solar ratio, suggesting that ~70% of the Iron mass in the hot ISM was originated from SNe Type Ia. The a-element to Fe abundance ratio remains constant out to at least 100 kpc, indicating that SNe Type II and Ia ejecta are well mixed in a scale much larger than the extent of the stellar body.
Submission history
From: Dong-Woo Kim [view email][v1] Wed, 3 Mar 2004 22:29:55 UTC (615 KB)
[v2] Mon, 30 Aug 2004 20:27:29 UTC (308 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.