Astrophysics
[Submitted on 26 Mar 2004 (v1), last revised 29 Sep 2004 (this version, v4)]
Title:The Mass Discrepancy-Acceleration Relation: Disk Mass and the Dark Matter Distribution
View PDFAbstract: The mass discrepancy in disk galaxies is shown to be well correlated with acceleration, increasing systematically with decreasing acceleration below a critical scale a0 = 3700 km^2/s^2/kpc = 1.2E-10 m/s/s. For each galaxy, there is an optimal choice of stellar mass-to-light ratio which minimizes the scatter in this mass discrepancy-acceleration relation. The same mass-to-light ratios also minimize the scatter in the baryonic Tully-Fisher relation and are in excellent agreement with the expectations of stellar population synthesis. Once the disk mass is determined in this fashion, the dark matter distribution is specified. The circular velocity attributable to the dark matter can be expressed as a simple equation which depends only on the observed distribution of baryonic mass. It is a challenge to understand how this very fine-tuned coupling between mass and light comes about.
Submission history
From: Stacy McGaugh [view email][v1] Fri, 26 Mar 2004 01:30:04 UTC (406 KB)
[v2] Mon, 29 Mar 2004 18:29:05 UTC (405 KB)
[v3] Mon, 29 Mar 2004 22:40:46 UTC (405 KB)
[v4] Wed, 29 Sep 2004 15:45:14 UTC (406 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.