Astrophysics
[Submitted on 21 Apr 2004 (v1), last revised 24 Apr 2004 (this version, v2)]
Title:Statistical Significance of Small Scale Anisotropy in Arrival Directions of Ultra-High Energy Cosmic Rays
View PDFAbstract: Recently, the High Resolution Fly's Eye (HiRes) experiment claims that there is no small scale anisotropy in the arrival distribution of ultra-high energy cosmic rays (UHECRs) above $E>10^{19}$ eV contrary to the Akeno Giant Air Shower Array (AGASA) observation. In this paper, we discuss the statistical significance of this discrepancy between the two experiments. We calculate arrival distribution of UHECRs above $10^{19}$ eV predicted by the source models constructed using the Optical Redshift Survey galaxy sample. We apply the new method developed by us for calculating arrival distribution in the presence of the galactic magnetic field. The great advantage of this method is that it enables us to calculate UHECR arrival distribution with lower energy ($\sim 10^{19}$ eV) than previous studies within reasonable time by following only the trajectories of UHECRs actually reaching the earth. It has been realized that the small scale anisotropy observed by the AGASA can be explained with the source number density $\sim 10^{-5 \sim -6}$ Mpc$^{-3}$ assuming weak extragalactic magnetic field ($B \le 1$ nG). We find that the predicted small scale anisotropy for this source number density is also consistent with the current HiRes data. We thus conclude that the statement by the HiRes experiment that they do not find small scale anisotropy in UHECR arrival distribution is not statistically significant at present. We also show future prospect of determining the source number density with increasing amount of observed data.
Submission history
From: Hiroyuki Yoshiguchi [view email][v1] Wed, 21 Apr 2004 09:42:01 UTC (398 KB)
[v2] Sat, 24 Apr 2004 05:48:17 UTC (252 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.