Astrophysics
[Submitted on 27 Sep 2004 (v1), last revised 1 Nov 2004 (this version, v2)]
Title:Cosmology with mirror dark matter II: Cosmic Microwave Background and Large Scale Structure
View PDFAbstract: This is the second paper of a series devoted to the study of the cosmological implications of the existence of mirror dark matter. The parallel hidden mirror world has the same microphysics as the observable one and couples the latter only gravitationally. The primordial nucleosynthesis bounds demand that the mirror sector should have a smaller temperature T' than the ordinary one T, and by this reason its evolution can be substantially deviated from the standard cosmology. In this paper we took scalar adiabatic perturbations as the input in a flat Universe, and computed the power spectra for ordinary and mirror CMB and LSS, changing the cosmological parameters, and always comparing with the CDM case. We found differences in both the CMB and LSS power spectra, and we demonstrated that the LSS spectrum is particularly sensitive to the mirror parameters, due to the presence of both the oscillatory features of mirror baryons and the collisional mirror Silk damping. For x<0.3 the mirror baryon-photon decoupling happens before the matter-radiation equality, so that CMB and LSS power spectra in linear regime are equivalent for mirror and CDM cases. For higher x-values the LSS spectra strongly depend on the amount of mirror baryons. Finally, qualitatively comparing with the present observational limits on the CMB and LSS spectra, we show that for x<0.3 the entire dark matter could be made of mirror baryons, while in the case x>0.3 the pattern of the LSS power spectrum excludes the possibility of dark matter consisting entirely of mirror baryons, but they could present as admixture (up to 50%) to the conventional CDM.
Submission history
From: Paolo Ciarcelluti [view email][v1] Mon, 27 Sep 2004 15:25:30 UTC (210 KB)
[v2] Mon, 1 Nov 2004 19:37:33 UTC (210 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.