Astrophysics
[Submitted on 18 Oct 2004]
Title:SparsePak: A Formatted Fiber Field-Unit for The WIYN Telescope Bench Spectrograph. II. On-Sky Performance
View PDFAbstract: We present a performance analysis of SparsePak and the WIYN Bench Spectrograph for precision studies of stellar and ionized gas kinematics of external galaxies. We focus on spectrograph configurations with echelle and low-order gratings yielding spectral resolutions of ~10000 between 500-900nm. These configurations are of general relevance to the spectrograph performance. Benchmarks include spectral resolution, sampling, vignetting, scattered light, and an estimate of the system absolute throughput. Comparisons are made to other, existing, fiber feeds on the WIYN Bench Spectrograph. Vignetting and relative throughput are found to agree with a geometric model of the optical system. An aperture-correction protocol for spectrophotometric standard-star calibrations has been established using independent WIYN imaging data and the unique capabilities of the SparsePak fiber array. The WIYN point-spread-function is well-fit by a Moffat profile with a constant power-law outer slope of index -4.4. We use SparsePak commissioning data to debunk a long-standing myth concerning sky-subtraction with fibers: By properly treating the multi-fiber data as a ``long-slit'' it is possible to achieve precision sky subtraction with a signal-to-noise performance as good or better than conventional long-slit spectroscopy. No beam-switching is required, and hence the method is efficient. Finally, we give several examples of science measurements which SparsePak now makes routine. These include H$\alpha$ velocity fields of low surface-brightness disks, gas and stellar velocity-fields of nearly face-on disks, and stellar absorption-line profiles of galaxy disks at spectral resolutions of ~24,000.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.