Astrophysics
[Submitted on 10 Jan 2005]
Title:IGM metal enrichment through dust sputtering
View PDFAbstract: We study the motion of dust grains into the Intergalactic Medium (IGM) around redshift z=3, to test the hypothesis that grains can efficiently pollute the gas with metals through sputtering. We use the results available in the literature for radiation-driven dust ejection from galaxies as initial conditions, and follow the motion onward. Via this mechanism, grains are ejected into the IGM with velocities >100 km/s; as they move supersonically, grains can be efficiently eroded by non-thermal sputtering. However, Coulomb and collisional drag forces effectively reduce the charged grain velocity. Up-to-date sputtering yields for graphite and silicate (olivine) grains have been derived using the code TRIM, for which we provide analytic fits. After training our method on a homogeneous density case, we analyze the grain motion and sputtering in the IGM density field as derived from a LambdaCDM cosmological simulation at z = 3.27. We found that only large (a >~ 0.1-um) grains can travel up to considerable distances (few times 100 kpc physical) before being stopped. Resulting metallicities show a well defined trend with overdensity delta. The maximum metallicities are reached for 10<delta<100 (corresponding to systems, in QSO absorption spectra, with 14.5 < log N_HI < 16). However the distribution of sputtered metals is very inhomogeneous, with only a small fraction of the IGM volume polluted by dust sputtering (filling factors of 18 per cent for Si and 6 per cent for C). For the adopted size distribution, grains are never completely destroyed; nevertheless, the extinction and gas photo-electric heating effects due to this population of intergalactic grains are well below current detection limits.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.