Astrophysics
[Submitted on 19 Jan 2005 (v1), last revised 22 Sep 2005 (this version, v2)]
Title:Challenges for Kinetic Unified Dark Matter
View PDFAbstract: Given that the dark matter and dark energy in the universe affect cosmological observables only gravitationally, their phenomenology may be described by a single stress energy tensor. True unification however requires a theory that reproduces the successful phenomenology of LCDM and that requirement places specific constraints on the stress structure of the matter. We show that a recently proposed unification through an offset quadratic kinetic term for a scalar field is exactly equivalent to a fluid with a closed-form barotropic equation of state plus cosmological constant. The finite pressure at high densities introduces a cutoff in the linear power spectrum, which may alleviate the dark matter substructure problem; we provide a convenient fitting function for such studies. Given that sufficient power must remain to reionize the universe, the equation of state today is nonrelativistic with p proportional to rho^2 and a Jeans scale in the parsec regime for all relevant densities. Structure may then be evolved into the nonlinear regime with standard hydrodynamic techniques. In fact, the model is equivalent to the well-studied collisional dark matter with negligible mean free path. If recent observations of the triaxiality of dark matter halos and ram pressure stripping in galaxy clusters are confirmed, this model will be ruled out.
Submission history
From: Dimitrios Giannakis [view email][v1] Wed, 19 Jan 2005 21:10:20 UTC (108 KB)
[v2] Thu, 22 Sep 2005 23:48:05 UTC (349 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.